Rad Ruđerovih znanstvenika o podrijetlu života

  • Objavljeno u Znanost
image

U potrazi za kemijskim podrijetlom života, međunarodni istraživački tim, koji predvode dr. sc. Ivan Halasz s Instituta Ruđer Bošković (IRB) i dr. sc. Ernest Meštrović iz farmaceutske tvrtke Xellia te naslovni profesor na Prirodoslovno-matematičkom fakultetu u Zagrebu, otkrio je mogući alternativni put za nastanak karakterističnog supramolekulskog uzorka molekule DNK.

Eksperiment proveden na njemačkom elektronskom sinkrotronu – DESY pokazao je da karakteristični parovi dušičnih baza DNK mogu nastati zagrijavanjem u čvrstom stanju, bez korištenja vode ili drugih otapala. Rezultati istraživanja objavljeni su u uglednom časopisu Chemical Communications.

"Jedno od najintrigantnijih pitanja u potrazi za podrijetlom života jest kako je došlo do kemijske selekcije te kako su nastale prve biomolekule'', navodi Tomislav Stolar, doktorand u Laboratoriju za zelenu sintezu IRB-a u Zagrebu te prvi autor na radu.

Žive stanice kontroliraju proizvodnju biomolekula sofisticiranim staničnim mehanizmima, međutim prvi molekularni i supramolekularni građevni blokovi života vrlo vjerojatno su stvoreni čistomkemijom i bez enzimske katalize. U sklopu najnovijeg rada znanstvenici su istražili stvaranje parova nukleobaznih jedinica koji djeluju kao molekularne jedinice prepoznavanja u deoksiribonukleinskoj kiselini (DNK).

Ljudski genetski kod pohranjen je u molekuli DNK kao specifična sekvenca zapisana nukleobazama adenin (A), citozin (C), gvanin (G) i timin (T). Kod je raspoređen u dvije duge, komplementarne niti koje su namotane u strukturu dvostruke zavojnice. U lancima se svaka nukleobaza uparuje s komplementarnom bazom drugog lanca: adenin s timinom te citozin s gvaninom. ''U molekuli DNK javljaju se samo određene kombinacije uparivanja, ali kad se nukleobaze izoliraju, one se uopće se ne vole međusobno vezati. To nas dovodi do pitanja zašto je priroda uopće odabrala ove bazne parove", kaže Stolar.

Interes znanstvene zajednice za istraživanja sparivanja nukleobaza bio je motiviran otkrićem strukture dvostruke uzvojnice DNK, koju su 1953. godine otkrili James Watson i Francis Crick. Međutim, prilično iznenađujuće, malo uspjeha je bilo ostvareno u postizanju specifičnog sparivanja nukleobaze u uvjetima koji bi se mogli smatrati prebiotičkima.

"Mi smo odlučili istražiti drugačiji put'', objašnjava koautor na radu Martin Etter, voditelj mjerne stanice na DESY-u, gdje su obavljena mjerenja, te dodaje "Pokušali smo otkriti može li se sparivanje baza postići uporabom mehaničke energije ili jednostavno - zagrijavanjem.''

Prvo su u laboratoriju  istražili mogućnosti sparivanja ‘mljevenjem'. Nastao je par adenina i timina (A:T), što je poznato unazad tridesetak godina. Međutim, mljevenjem se nije moglo postići stvaranje parova metiliranih gvanina i citozina (G:C). Stoga je u drugom koraku tim znanstvenika zagrijao prethodno samljeveni prah citozina i gvanina. "Pri oko 200 Celzijevih stupnjeva doista smo mogli promatrati stvaranje nove čvrste faze i parova citozin-gvanin", objašnjava Stolar.

Istražujući selektivnost u sparivanju zagrijavanjem, tim je ponovio eksperimente sa smjesama tri i četiri nukleobaze na mjernoj stanici na njemačkom elektronskom sinkrotronu – DESY u Hamburgu gdje su pratili promjene u kristalnim čvrstim fazama i ustanovili da se i u smjesi, nukleobaze sparuju prema uzorku poznatom iz njihovog sparivanja u uzvojnici DNK.

"Naši rezultati pokazuju mogući alternativni put nastajanja obrazaca molekularnog prepoznavanja koje promatramo u molekuli DNK", navodi Stolar te dodaje ''Uvjeti koje smo stvorili u sklopu eksperimenta mogući su onima koji su prevladavali na Zemlji u vrijeme nastanka života, a koja je tada bila vrući, kipući kotao s vulkanima, potresima, udarima meteorita i raznim vrstama drugih sličnih događaja. Naši rezultati otvaraju nove smjerove istraživanja kemijskog podrijetla života", zaključio je Stolar.

Podijeli